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Abstract. In this paper we identify a class of symmetries for Lagrangian systems, called 
higher-order Noether Symmetries, which yield a corresponding first integral without further 
integrations. First, a version of Noether’s theorem is recalled in which Noether symmetries 
are considered to be symmetries of the two-form de, 0 being the Cartan form. nth-order 
Noether symmetries are then defined by the requirement L> d0 = 0. The picture is further 
generalised by exploring various ways in which the computation of repeated Lie derivatives 
of dB can lead to the identification of first integrals. A number of illustrative examples are 
discussed. 

1. Introduction 

The problem of relating constants of the motion to symmetries has always found 
considerable interest in various branches of theoretical physics. For classical Lagran- 
gian mechanics and classical field theory, there is no doubt that Noether’s theorem 
(Noether 1918) provides the most celebrated result in this matter. Although it has 
never really been absent in subsequent scientific literature, one can easily say that this 
theorem and various generalisations have gained renewed interest during the last 
decade. While on the one hand it is instructive to see how many authors use different 
approaches, it is rather unfortunate and confusing that these approaches often show 
important aberrations in their conclusions, and are therefore of a rather controversial 
nature. 

In a recent paper (Sarlet and Cantrijn 1981), we have made a comparative study of 
different approaches to Noether’s theorem in classical mechanics, in an attempt to 
clarify conceptually the origin of these differences and present arguments in favour of a 
best possible approach. We refer to this paper for more references on the subject. Let 
us, however, briefly summarise some of the achievements of this study. In the first 
place, in any theory aimed at establishing a link between symmetries and conservation 
laws, we favour those approaches which succeed in showing a kind of exclusiveness in 
this relationship. From this point of view one can criticise generalisations of Noether’s 
theorem which go so far that all symmetries correspond to all constants of the motion, as 
is the case, for example, in treatments by Rosen (1972,1974) and Candotti et a1 (1972). 
Note that similar criticism was formulated by Martinez Alonso (1979). Our study 
further revealed that the kind of restrictions on the gauge function, proposed e.g. by 
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Lutzky (1979), is not very appropriate for achieving a form of one-to-one cor- 
respondence between symmetries and first integrals. Most importantly, we showed that 
the two main approaches to Noether's theorem for velocity-dependent symmetry 
generators do have that kind of exclusiveness, and that moreover they are essentially 
equivalent. One of these approaches is based on classical calculus of variations in which 
infinitesimal transformations are required to leave the action integral invariant up to 
gauge terms. As a typical paper of this nature, we can cite a treatment by Djukic (1973), 
which was recently generalised by Djukic and Straws (1980) to systems described by 
Lagrangian functions depending on second-order derivatives and with non-conser- 
vative forces. The other approach makes use of the characterisation of Lagrangian 
systems in terms of vector fields and differential forms on the tangent bundle of a 
manifold. A good reference here is a paper by Crampin (1977). In that context we 
defined Noether transformations to be symmetries of the two-form de, 0 being the 
so-called Cartan form pi dq' - H  dt, expressed in Lagrangian coordinates. 

The higher-order Noether symmetries, which we intend to discuss in the present 
paper, find their origin in a generalisation of this second approach. 

If for a moment we go back to a more general framework, one of the first questions 
which arises in a natural way is this: if the given second-order system is not of 
Lagrangian type, could there still be a way to associate a first integral with every 
symmetry, and similarly even for a Lagrangian system, if the symmetry is not of Noether 
type, can it be associated with a constant of the motion? Such questions have been 
discussed e.g. by Lutzky (1979), Prince and Eliezer (1980) and Prince (1980). These 
authors consider a first integral as being associated with a given symmetry if it is in 
addition an invariant of the symmetry vector field itself. Unlike with Noether's 
theorem, however, the determination of a constant obeying this rule still requires the 
solution of a system of differential equations. It is interesting to note that the class of 
higher-order Noether symmetries which we will introduce here directly yields a 
corresponding first integral with the above property, without further integrations. 

The plan of the paper is as follows. In  § 2 we briefly recall the definition of a 
Lagrangian system via a characteristic vector field of de, and the formulation of 
Noether's theorem via symmetries of de. In § 3 we proceed to the derivation of 
higher-order Noether symmetries and their related constant of the motion. Section 4 
gives an analysis of a more general structure behind these results, which will help us to 
understand them better. In § 5 we present a number of examples, in which use is made 
of a class of symmetries for linear systems, derived in an Appendix. Section 6 contains 
some general comments. For some basic concepts (and properties) of differential 
geometry, which are used throughout this paper, the reader may consult e.g. Godbillon 
(1969) or Hermann (1968). 

2. Lagrangian systems and Noether's theorem 

Consider a configuration manifold M and the associated extended tangent bundle 
R X  TM, on which we choose a set of natural local coordinates ( t ,  qi, ii) ( i  = 1,. . . , a ) .  
Let L be a function on R x TM, which is regular in the domain of the coordinate chart, in 
the sense that the Hessian matrix a2L/dq'aqi is non-singular. Consider the one-form 

8 = L dt + (aL/&j')(dq' - 4 '  dt). 

We say that a vector field r defines (locally) a Lagrangian system (with Lagrangian L) ,  if 
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it has time-component one, and is a characteristic vector field of de, i.e. we have 

ir dB = 0, (r, dt) = 1. (2) 

It is straightforward to check that the requirements (2) will imply that r is of the form 

a a a r = - + q ' 7 + A i ( t ,  q, 4)- 
at aq aq' 

(3) 

and that moreover the system of second-order differential equations associated with r, 
namely 

4 '  = Ai(t, q, 4 ) ,  (4) 

will have the familiar structure of a system of Euler-Lagrange equations, but written in 
normal form. Next, consider a general vector field Y on R X  TM, with coordinate 
representation 

Y is a symmetry of r if [ Y, r] = 0. 
Infinitesimal transformations generated by such a symmetry leave the differential 

equations (4) invariant. If, with regard to this invariance, one allows a change of the 
parametrisation of (4), the bracket of Y and r need not vanish. Instead, one obtains the 
requirement that 

[y,rl=gr (6) 

for some function g (see Crampin (1977) or Hermann (1968 p 42)). We will refer to 
vector fields with this property as general 'dynamical symmetries' of r. Note that, in 
view of the specific structure (3) of I?, the requirement (6) explicitly reads 

from which it follows that 

g = -w), 
= r(g) - $r(7). 

It can be shown that symmetries of the two-form df3 constitute a particular class of 
dynamical symmetries. It is this class which is used in our formulation of Noether's 
theorem. 

Definition. A Noether symmetry of the Lagrangian system r is a symmetry of the 
two-form de, i.e. a vector field Y with the property 

L y  dB=0.  (9) 

Note that, in this local description, a requirement like (9) implies 

L @ = d f  (10) 

for some 'gauge function' f, and we obtain the following results. 
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Theorem 1. 
(i) To each Noether symmetry Y corresponds a constant of the motion 

F = f - ( Y , @ )  (1 1) 

which is unique up to a trivial constant. 

t o  a trivial dynamical symmetry hl?. 
(ii) To each first integral F corresponds a Noether symmetry Y, which is unique up 

(iii) F is in addition an invariant of Y, i.e. we have 

Y(F)  = 0. (12) 

For more details about these matters, we refer to our earlier quoted review paper and 
references therein. 

3. Higher-order Noether symmetries and constants of the motion 

Consider a Lagrangian system r as defined by (2). Let Y be a dynamical symmetry of r, 
and define the one-form a by the inner product of Y with the two-form de. This means 
that basically the quantities r, Y, 8, and a are interrelated by the formulae 

ir d8  = 0 ,  ( 1 3 ~ )  

[Y,I'l=gr, (136) 

i y  d0 =a.  ( 1 3 ~ )  

Properties of the one-form a 

(i) From (13a, c)  we trivially obtain 

(r, a )  = 0, 

(Y,a)=O.  

(ii) a is an invariant one-form under r. Indeed, we have 

Ll-a = Lriy  d e  

= iyLr d0 - i[y,r] d0 = 0 ,  (15) 

in view of (13a, b) .  
If a happens to be exact (a  = dF) ,  Y is a Noether symmetry, and we are in the 

situation covered by theorem 1. If a is not exact, no direct formula exists for 
relating the symmetry Y to a first integral F. However, we can make, so to speak, a 
second try. Indeed, in view of (14a) ,  we have 

L r a  = ir da.  

Therefore, by (15)  we can write 

i r d a = O  

and also 

[Y, ri= g r ,  
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iy d a  = p, ( 1 6 ~ )  

where the latter relation defines the one-form p. 
Comparing (16) with (13), we see that we are back in the original situation but with a 

replacing e. Of course, the new relations (16) are only of interest if d a  is not a constant 
multiple of de. Under this assumption it could happen that this time /3 is exact, say 

/3 = dF. (17) 

In that case it immediately follows from properties (i) written for p that F is a constant 
of the motion of r, and is in addition an invariant of the symmetry Y. The necessary and 
sufficient condition for p to be exact is easily obtained as follows: 

O=dp  = Ly d a  = LyLy de. (18) 

In comparison with the definition of a Noether symmetry (9), we call a dynamical 
symmetry satisfying (18) a 'second-order Noether symmetry'. 

When p is not exact, it is clear that we can repeat the whole story as many times as 
wanted. In each step we will recover a set of relations of type (13) or (16), with the 
possibility that the newly obtained one-forms a,  p, y, . . . could be exact and lead to a 
corresponding first integral. We can summarise this whole procedure as follows. 

Definition. A dynamical symmetry Y of r is called a Noether symmetry of order n if 

L;de=O (19) 

and L b  dB # 0 for k < n. 

Theorem 2. 
(i) To each Noether symmetry of order n (a1) corresponds a constant of the 

motion F, determined by 

L$-'iy d e  = dF. (20) 

(ii) F has the invariance property Y(F) = 0. 

Proof. From the assumptions (6) and (19) it follows that: 

(1) 
hence L;-'iY dB = d F  for some F; 

( 2 )  

dL;-'iy de  = L;-l diy dB = L; de  = 0, 

irL;-liy d8 = LyirL;-'iy de  + i[r,yIL;-'iy dB 

= (Ly - g)irL;-'iy dB 

= (LY - g)"-'iriy d e  = 0, 
hence r(F) = 0; 

( 3 )  

hence Y (F) = 0. 

iYL;-'iy d e  = L;-'iyiy d e  = 0, 

Note that the analogue of formula (11) for the Noether constant here becomes 

with df = Lnd. 
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Some comments are in order now. First of all, although the case n = 1 (i.e. Noether’s 
theorem) appears here merely as a particular case of the above results, it must be said 
that there remains a clear distinction between n = 1 and n > 1. This distinction already 
emerges in the definition. Indeed, a vector field Y satisfying (19) for n = 1 is automa- 
tically a dynamical symmetry of r. This is no longer the case for n > 1, so that the 
symmetry requirement was explicitly stated in addition to condition (19). In comparing 
theorems 1 and 2, one also notices that there is no converse statement in theorem 2, 
which is, however, not a drawback. Theorem 2 must be seen as providing a possible way 
of deriving a first integral if a dynamical symmetry is known which is not a Noether 
symmetry. If, conversely, a first integral is known, it would not make much sense to 
relate it to a higher-order Noether symmetry, if it can already be understood as being 
generated by a simple Noether symmetry, according to the converse statement in 
theorem 1. 

Secondly, as stated in the Introduction, the preceding results are not at all restricted 
to Lagrangian mechanics. As a matter of fact, it is quite easy to identify the essential 
features we need for deriving these results, even in a global way. Consider a general 
manifold N, on which an exact two-form d8  is globally defined (not necessarily of 
maximal rank). Let a dynamical system on N be defined by a vector field r which is 
characteristic for de, so that equation (13a) holds. If in addition we assume that N is 
simply connected, all the above results hold globally. Indeed, under these circum- 
stances the converse of the PoincarC lemma holds globally for closed one-forms, which 
is essentially the only tool we needed. For manifolds which are not simply connected, we 
get at least local first integrals. 

With this in mind, we intend in the next section to generalise a bit further the results 
contained in theorem 2. Now it certainly is possible to construct a much more abstract 
general theory, from which theorem 2 would follow as a special case. However, it is 
clear, from the terminology we have introduced, that in the first place we want to stay 
close to Noether’s theorem in Lagrangian mechanics. Therefore we will limit ourselves 
to some simple considerations which will help to understand in what sense an occur- 
rence like (19) can be situated within relations which will always hold, when one 
computes subsequent powers of the Lie derivative, applied to de. 

4. Some generalisations 

It is worthwhile considering first the following remark. Our original idea, as explained 
in the previous section, consisted in trying to detect exact invariant one-forms (like a, p, 
etc) by consecutively deriving sets of relations like (13) and (16). Now the condition 
that L$ d 8  = 0 for some k is not the only way in which such an invariant exact one-form 
can be discovered. Indeed, if the kth-order Lie derivative of d e  is a linear combination 
of lower-order derivatives with constant coefficients, a similar linear combination of the 
forms a, p, . . , will be exact, and invariant under I‘. As an example, consider the case 
that 

L$ d 8  = CLY d8 ( c  constant). (22) 

From the definition of CY and p, ( 2 2 )  implies 
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hence (locally) 

P-CCU =dF,  

which in view of properties (i) for a and P will imply that F is a constant of and Y. 
It could be said that for a given dynamical symmetry Y of a Lagrangian system r, a 

relation like (19) or (22)  will only accidenta!ly be true. Nevertheless we would like to 
show that it can in any case be useful to compute consecutive Lie derivatives of de, once 
a symmetry Y is known. At least locally, since the space of two-forms is finite- 
dimensional, after a sufficient number of derivatives we must get a relation of the type 

k--1 

1=0 
L$d6 = 1 flLLd0, 

where the f l  are functions. 
The maximal number of derivatives one must consider is even a bit less than the 

dimension of two-forms. In fact, since ir de  = 0 and Y is a dynamical symmetry of r, we 
will have ir(Ly de)  = 0 for all m. Hence de, LY de, L$ de, . . . will all be exact absolute 
integral inuariants of order two of the vector field r (see e.g. Godbillon 1969). In this 
way one can show that a relation of type (23)  will occur after at most k = Cin derivatives 
(the dimension of our manifold being 2n + 1 here). The relevance of obtaining a 
relation like (23)  is then expressed by the following result. 

Theorem 3. Let Y be a dynamical symmetry of r, and assume that k is the first number 
for which (in some local neighbourhood) equation (23)  holds true. Then the functions f 1  
are constants of the motion of r. 
Proof. We compute the Lie derivative with respect to r of both sides of (23) ,  and try to 
commute Lr with all Ly. Using (6), it is easy to see that all expressions of the form 
LrL? dB will eventually be reduced to sums of terms like LPyLfr de, which are all zero. 
As a result we will end up with the relation 

Since we assumed that all derivatives of order lower than k were independent, this will 
imply r(f1) = 0, which completes the proof. 

It is questionable whether one should say that constants f~ thus obtained are 
'generated' by the symmetry Y, since for instance they do not have in general the 
property Y (  f l )  = 0. Nevertheless we see that computing higher-order Lie derivatives of 
dB will 'very often' provide us with some constants of the motion. We can describe in 
precise terms what is meant by 'very often' in the following summary. 

Consider again the assumptions of theorem 3.  Then we can distinguish between the 
following situations. 

(i) The f l  are not all trivial constants. In that case the non-trivial ones provide us 
with constants of the motion of r which are, however, not necessarily invariant 
under the flow of Y. 

(ii) All f l  are trivial constants cI. Then we must make a further distinction. 
(a) co = 0. In this case one can construct a constant of the motion F with property 

Y ( F )  = 0, as explained with the example (22). If all C I  (I = 0 ,  . . . , k - 1) are zero, we of 
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course recover here the higher-order Noether symmetries discussed ,in the previous 
section. 

(b) co # 0. In this case there seems to be no way for finding a related first integral 
without further integrations. Note hereby that it is in principle always possible to find a 
first integral of Noether type (11) from a general dynamical symmetry (i.e. not 
necessarily a Noether symmetry). Indeed, it suffices to find a particular solution f of the 
partial differential equation 

r(f) = Y(L)  + r w ,  (24) 

which follows from requiring that F = f - (Y ,  e) be constant. This is of course not a 
direct construction of a first integral. Moreover, it can be shown that for the present 
case the situation is even worse in the following sense: solving equation (24) amounts to 
finding a first integral, because a particular solution for f is immediately at hand, but 
unfortunately leads through (1 1) to the zero constant. 

With an eye on the search for possible examples, we end this discussion by the 
following remark. For Lagrangian systems with one degree of freedom ( n  = l), we 
obtain k = 1 as the maximal number of derivatives one must compute, before obtaining 
an identity like (23). In other words we will always have 

L y  d e  = f d e  (25) 

for some f (possibly zero), so that no cases of higher-order Noether symmetry can be 
found for these one-dimensional systems. 

5. Illustrative examples 

As a necessary prerequisite for computing first'integrals from the results of theorem 2, 
we must of course know dynamical symmetries of the given system. Searching for such 
symmetries amounts to solving a system of partial differential equations (see the 
Appendix). These equations are greatly simplified if one restricts attention to genera- 
tors Y which project onto a vector field on R X M, in other words if the infinitesimal 
transformations are restricted to be pure coordinate transformations (not depending on 
velocities). Within this class of symmetries for Lagrangian systems, some will be of 
Noether type, and others will not. In the examples, we will therefore focus on the 
non-Noether symmetries of coordinate type, and see whether some of these happen to 
be higher-order Noether symmetries. 

5.1. Harmonic oscillator 

A great number of recent papers have in some way or another dealt with the complete 
eight-parameter symmetry group for the harmonic oscillator. We can refer e.g. to 
Wulfman and Wybourne (1976), Lutzky (1978) and Leach (1980). It is known that for 
this system, governed by 

L = $(4* - q2) ,  

five of the symmetry generators are of Noether type. The three non-Noether sym- 
metries are given by (we only write down their projection Yco) on R x M )  

Y\') = q a/aq, 
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Y:"' = q sin t a/at + q 2  COS t a/aq, 

Y:"' = q COS t a/at -q2sin t a/aq. 

Since the system is one-dimensional we cannot expect to find higher-order Noether 
symmetries among these. It is straightforward to check that we get 

Lyl d9 = 2 d9, 

Lyz d9 = 3(q cos t - 4 sin t )  de, 

Lu3 d9 = -3(q sin t + 4 cos t )  de, 
which is in agreement with (25 ) ,  and where indeed q cos t - q sin t and q sin t + 4 cos t 
are constants of the motion, as predicted by theorem 3. 

5.2. Kepler problem 

For the plane motion of the Kepler problem we have the Lagrangian 
2 -1/2 L = M + 4 3 + P ( q : + q 2 )  * 

yCo) = t a/at + $ql  a/aql + $q2 a/aq2, 

Prince and Eliezer (1979) recently derived a point-transformation symmetry 

which is not a Noether symmetry, but nevertheless can be said to generate the 
components of the Runge-Lenz vector as invariants by the requirement Y(F) = 0. One 
might expect therefore that we are facing here a higher-order Noether symmetry, or at 
least a symmetry belonging to the class (iia) of the summary in § 4. Surprisingly, 
however, this is not the case. As a matter of fact we have 

LIr d8  = 4 d9 

(even LyB = $ e ) ,  which is the type of 'desperate situation' discussed in (iib). As a result 
we are unable to find a substitute here for the integration procedure used by Prince and 
Eliezer. 

5.3. Linear Lagrangian systems 

If we want to find some examples of second-order Noether symmetries, we better take 
multidimensional systems, which of course significantly enhances the amount of 
calculations. We therefore only discuss a couple of linear second-order systems, which 
are taken from a study on the inverse Lagrangian problem by Sarlet (1980). In the 
Appendix we derive a general class of symmetries for linear systems with constant 
coefficients, which will be useful for the next examples. 

Consider the system 

4 1  + 2Aqi + 242 + bqi + C ~ Z  = 0 ,  

42 + 2A42 + bq2 = 0, 

with Lagrangian 

L = e2A'[4142 + tq;- bqlq2 - ( ic  + bt)q:]. 

It is a system of the type (A2) with [A, B] = 0. If we assume that c # 2A, the general 
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solution of a matrix R satisfying (A9) and (A10) is given by 

.=(; ;), 

and determines a dynamical symmetry via (A8). This will be a Noether symmetry if 
iy d e  is exact, where we recall that Y is related to Yco) by 

Y = Y(0)+qi a/alii, ( 2 9 )  

with q i  determined by (8). From a straightforward calculation, it is found that 
i y  dB = d F  if and only if 

p = - A ,  v = -1. ( 3 0 )  

The corresponding first integral is given by 

F = eZAr[bq1q2+t(c  +2bt)qg+Aql(i~-th4lq2+(2At+ l ) q ~ 4 ~ + 4 1 4 ~ + t 4 g I .  (3 1) 

Now Y will be a second-order Noether symmetry if 

Lyiy dB = dG ( 3 2 )  

for some G. This again leads to the requirement p = -A, but v this time is arbitrary, and 
the corresponding constant of the motion G reads 

G = (v + 1) e2"(4;+ 2Aq242 + bq:), ( 3 3 )  

which is of course an expected integral related to the independent equation in q 2 .  
As a final example, consider the system 

which has a Lagrangian representation with 

L = -e2^'[$(4:+4:) -$ t (4A - t)4: + ( t  - 2 ~ ) q l ( i 2 + 4 l ( i 3  + t4243 -q1d2 
( 3 5 )  

+qz43 -%q? + q?) +4t(4A - t )q? i - ( t -2h) (q iq2+  q2q3)-qiq31. 

For this example we have [A, B ]  f 0, but the condition (A14) is satisfied (see Sarlet 
1980). As a result, for finding symmetries of type (A8) a matrix Ro must be obtained 
satisfying two commutativity conditions (see Appendix). With the resulting sym- 
metries, one can again test the exactness of i y  d e  and Lyiy  de. The calculations are 
straightforward but very tedious. One obtains the following two generators of second- 
order Noether symmetries: 

1 a 
- - [q1+ ( t  + 2A +4Ab)q2 + (1 + 4A2)q3]-,  

4A a q 3  
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1 a 
2A aq3 

- - [q1+ ( t  + 2A + 2Ab)qz + ( 1 + 2A ')q3] - . (37) 

The constant corresponding to Y1 is found to be essentially the damped oscillator 
constant for the equation in q2, namely 

F =2A(b  + 1)Fl 

where 

F1 = eZAt(& + 2AqZ42 + 4:). 
Putting 

GI = [A ( q 1 4 2  + q2dl + q243 + q3ciz) + q 2 4 2  + ( i l 4 2  + 4 2 4 3  + qlq2  + q m 1  e'", 

GZ = [ ; (4: + 4 :  +q? +si) + A  (41 + q3)((ii +43)-2A~jiLiz + 4143 +$(I -4A2)(qzd1 + qi(iz) 

+ i(q2.43 + q342) - 2Aq242 - 3Aqlq2 + q1q3 - Aq~q31 e'*', 

the constant corresponding to Y2 has the following explicit form: 

F' = 2A(b + 1)Fi +F2, with Fz = tFl + G1. (39) 

Finally, one can check that Y1 becomes a Noether symmetry if b = -1. The cor- 
responding Noether constant becomes 

(40) F3 = -;t2F1 + 2AtF1- Git-  Gz. 

Note that, for this example, the integrals obtained through second-order Noether 
symmetries were in fact already derivable from the Noether constant (40). Indeed, in 
view of the structure of the functions F l ,  G1 and GZ, one can show that F3 being a 
constant of the motion necessarily implies that F1 and F2 must be constants too. 

6. Concluding remarks 

It is clear from the above examples that the calculations involved in the search for 
higher-order Noether symmetries and their related first integrals can be very lengthy. In 
writing this paper, it was not our intention to promote higher-order Noether sym- 
metries as the general method in the search for first integrals of Lagrangian systems. 
Certain ad hoc constructions can sometimes be easier for that goal (see e.g. Sarlet and 
Bahar 1980). Nevertheless, it is a fact that all methods with a certain degree of 
generality become computationally complicated when applied to multidimensional 
systems. Therefore the ideas explored in this paper certainly can have a practical 
interest, especially in the following sense: if in some way or another a dynamical 
symmetry of a given Lagrangian (or Hamiltonian) system has been found, it can be 
worthwhile to compute subsequent Lie derivatives of de, because there are several ways 
in which this can lead to the identification of first integrals (see the summary of § 4). We 
even suspect that if such a computation would give no results, this will be seen after a 
few steps, as was the case for the Kepler problem discussed above. 

On the theoretical side, we have found it instructive to discover a way for looking at 
Noether's theorem from a slightly more general point of view, which could be expressed 
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as follows: if we have a dynamical symmetry at our disposal, we can, so to speak, replace 
the given data (13) step by step by similar new data like (16), where a, p, , . , are always 
invariant one-forms with respect to r. Noether's theorem then corresponds to the case 
that in the original situation a already happens to be an exact one-form. 

Acknowledgment 

We are indebted to Professor Mertens for his continual interest and support, and for his 
careful reading of the manuscript. 

Appendix. A class of symmetries for linear systems 

A general dynamical symmetry Y for a second-order system (4) is defined by (6). Apart 
from the relations (7) and (8), the requirement (6) also yields the condition (see e.g. 
Sarlet and Cantrijn 1981) 

l?(q')-A'r(T)-  Y ( A ' ) = O .  (AI) 

When the v i  are substituted from (8), (Al )  gives rise to a system of partial differential 
equations for 6' and T. For given functions A', and when the symmetry is required to 
generate a point transformation (T and 6' functions of t and q only), this system will 
usually split into a number of simpler equations by the identification of coefficients of 
equal powers of 4. Reference to (Al )  in the subsequent developments must be 
understood as reference to this whole procedure. 

Specifically, we want to apply this scheme to linear systems, 

q +2Aq +Bq = 0, (A21 

where A and B are constant n x n matrices. From the third-order terms in 4, we then 
learn that T must be linear in q, say 

T = L Y ( t ) T q + T O ( t )  (A31 

with a ( t )  an n X 1 matrix, and T standing for transpose. Equating in (Al)  coefficients of 
the quadratic terms in 4 (after appropriate symmetrisation) then shows that the 6' can at 
most be quadratic in q, say 

the Q'( t )  being symmetric matrices, and the p ' ( t )  column vectors. 
Since a complete analysis of all symmetries would go far beyond our present needs, 

we immediately consider the simplification a = 0, which can be shown to lead to 0' = 0. 
Introducing the n x n matrix R( t )  by 

Ri. = ( p ' ) .  

the coefficients of the linear terms in 4 give rise to the condition 

2R - 2RA + 2AR = fo l -  2ioA ('45) 

where 1 is the n x n unit matrix. Finally, the terms arising from (Al)  which are 
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independent of q lead to two more conditions, namely 

I? - R B  + BR = -2AR - 2ioB (A6) 

plus the requirement that eO(t) must be a solution of the given system (A2). 
It is worth noting that equations (A5) and (A6) remain valid without the assumption 

a = 0, but then of course they must be supplemented by a number of other complicated 
equations involving a and Q. Taking the derivative of (A5), it can be shown by some 
straightforward manipulations that equation (A6) can be replaced by the simpler 
condition 

R (B - A ’) - (B - A ’) R = 2io(B - A ’) + i F o  1. (A7) 

It is clear now that it will be appropriate to consider a further simplification, which is the 
assumption that T~ is constant, say T~ = 1. Choosing moreover .$ = 0 we obtain the 
following result. 

Lemma. Consider a linear system of second-order equations (A2). Then the vector 
field 

Y‘O’=a/at+R,(t)q’ ,a/aql (A81 

R = R A  -AR, (449) 
R(B -A’) = (B -A*)R. 

generates a dynamical symmetry of (A2) if and only if the matrix R( t )  satisfies the 
conditions 

6410) 

Clearly the system (A2) need not be of Lagrangian type for the validity of this lemma. 
The fact that (A2) is Lagrangian can, however, simplify the search for solutions of (A9) 
and (A10). The general solution of (A9) is given by 

R = exp(-At)Ro exp(At), Ro = R (0) .  ( A l l )  
Introducing the matrix Z(t) by 

Z( t )=exp(At) (B -A’)dxp(-At), (A121 
it then follows that (A10) requires R o t o  commute with Z(t). From a Taylor expansion 
of this condition, one obtains 

R ~ ( B  -A?) = (B -A’)R~, 

where [A, B] = A B  -BA. 
The case [A, B] = 0 is particularly interesting, because it is sufficient for the 

existence of a Lagrangian. It is clearly also sufficient for the existence of a symmetry 
generator (A8), since all conditions (A13) are identically satisfied, except for the first 
one. Constructing a constant matrix Ro commuting with B -A2  will, through (A1 l), 
lead to a symmetry of type (A8). If, for instance, we have [A, B] # 0, but 

[A, [A, Bl1= 0 ,  (A14) 
we find a symmetry (A8) if an RO exists which commutes with both B - A 2  and [A, B]. 
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It would be interesting (but beyond the scope of this paper) to explore a 
possible interrelationship between the higher-order Noether symmetries and the 
'higher-order commutativity conditions' discussed by Sarlet (1980), and of which (A14) 
is an example. 
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